

Transfer NLP Documentation

Transfer NLP is a framework built on top of PyTorch which goal is to achieve 2 kinds of Transfer:

	easy transfer of code: the framework should be modular enough so that you don’t have to re-write everything each time you experiment with a new architecture / a new kind of task

	easy transfer learning: the framework should be able to easily interact with pre-trained models and manipulate them in order to fine-tune some of their parts.

You can try the library on this Colab Notebook [https://colab.research.google.com/drive/1DtC31eUejz1T0DsaEfHq_DOxEfanmrG1#scrollTo=Xzu3HPdGrnza]., which shows how to use the framework on several examples.
All examples on these notebooks embed in-cell Tensorboard training monitoring!

Installation

From source:

You can clone the source from github [https://github.com/feedly/transfer-nlp] and run

python setup.py install

Notes

	Concepts
	Experiment

	Json file

	Final thoughts

	Data Management Components
	Vocabularies

	Vectorizers

	Loaders

	Modeling Components
	Models

	Optimizers

	Trainer Components

	Frequently Asked Questions

Data Management

	vocabulary

	vectorizer

	loader

Experiment Management

	config

Package Components

	trainers

	predictors

	regularizers

Tutorials

	Surnames Classification
	Vectorizer

	Data loader

	Model

	Predictor

	Experiment

Miscellaneous

	License

	Contact

	Help

	Join the Feedly Lab Slack

Concepts

Experiment

The essence of the framework is the class ExperimentConfig, a class which
enables to define an experiment based on a json file. An experiment will contain all the components that you might need:
- Data loader
- Model
- Optimizer
- Trainer
- …

Launching experiments from json config files has two main advantages:

	reproducibility: when you are happy with the outcome of an experiment, the json file you used defines it entirely, so it is really easy to reproduce

	ablation studies: when experimenting with new architectures, it is becoming a standards practice to assess the importance of some model components to the outcome.

Using json files facilitates this process, where you just have to remove some components from the json file and run the experiment again.

from transfer_nlp.plugins.config import ExperimentConfig

Defining an experiment and starting the training pipeline
experiment_config = {...} # Config dictionary with components defining your experiment
experiment = ExperimentConfig(experiment_config)
experiment['trainer'].train()

Using the trained model to make predictions on some inputs
predictor = experiment['predictor']
json_input = {'inputs': []}
results = predictor.json_to_json(input_json=input_json)

Json file

The class ExperimentConfig has been designed so that an experiment can be
instantiated from any kind of objects you might need.
The experiment instantiator is able to deal with 3 kinds of inputs from the json files:

	Simple parameters: these are simple user-defined values, such as:

experiment_config = {"lr": 0.01,
 "seed": 1,
 "num_epochs": 1}

	simple lists: this is the same as simple parameters, but using lists, e.g.:

experiment_config = {"layer_sizes": [10, 50, 10]}

	complex configuration: here you can instantiate an object from any class. The framework will require the json file to contain the name of the used class, e.g.:

experiment_config = {"lr": 0.01,
 "model": {"_name": "MyClassifier"}}

When creating an instance of the class, ExperimentConfig will check for the hyperparameters. If it does not find them
and the class defines default parameters, those will be used. Otherwise, an exception will be thrown. So in this example
if the MyClassifier class takes input_dim and output_dim as hyperparameters, you would define the experiment as:

experiment_config = {"input_dim": 10000,
 "output_dim": 5,
 "model": {"_name": "MyClassifier"}}

or:

experiment_config = {"model": {"_name": "MyClassifier",
 "input_dim": 10000,
 "output_dim": 5}}

If one of your objects takes another complex object as initialization parameter, ExperimentConfig can build it
recursively, e.g.:

experiment_config = {
"my_dataset_splits": {
"_name": "SurnamesDatasetMLP",
"data_file": "$HOME/surnames/surnames_with_splits.csv",
"batch_size": 128,
"vectorizer": {
 "_name": "SurnamesVectorizerMLP",
 "data_file": "$HOME/surnames/surnames_with_splits.csv"
}
}

The framework encourages the use of this nesting definition for clarity. However, in this example if the object vectorizer
was needed to initialize another object in your experiment, you should isolate this multi-use object. Objects which will
use it will call a reference to that object using the common $ notation. This enables to not defining different objects
when we don’t need them.

experiment_config = {

 "common_object": {
 "_name": "MyCommonObject",
 "some_parameter": "foo/bar"
 },
 "complex_object_A": {
"_name": "ComplexObjectA",
"common_object": "$common_object"
},
 "complex_object_B": {
"_name": "ComplexObjectB",
"common_object": "$common_object"
}
}

To let Transfer NLP know about your custom classes, you add them to a registry. The framework does not require using
separate registries for some fixed set of components, such as Models, Optimizers, etc..
There is an only one registry of classes, where you need to add your custom classes to use the framework.

Let’s say you have a fancy model class that extends the PyTorch neural network module class. The only thing
you need to do is add the class to the registry using the @register_plugin decorator:

import torch
from transfer_nlp.plugins.config import register_plugin

@register_plugin
class MyClassifier(torch.nn.Module):
 def __init__(self, input_dim: int, ouput_dim: int):

 super(MyClassifier, self).__init__()

 def forward(self, input_tensor):
 # Do complex transofmrations
 return result

Finally, to enable the sharing of experiment configuration files, we can use environment variables for paths parameters,
and the framework will automatically replace them:

experiment_config = {
"my_dataset_splits": {
"_name": "SurnamesDatasetMLP",
"data_file": "$HOME/surnames/surnames_with_splits.csv",
"batch_size": 128,
"vectorizer": {
 "_name": "SurnamesVectorizerMLP",
 "data_file": "$HOME/surnames/surnames_with_splits.csv"
}
}
experiment = ExperimentConfig(path, HOME=str(Path.home() / 'data')) # Changes $HOME to a custom folder

Final thoughts

In the core design of Transfer NLP, the framework allows any kind of experiment to be instantiated, run, checkpointed, monitored, etc…
The framework is not PyTorch-specific at its core, which make it easy to extend to objects using other machine learning
backends such as tensorflow.
Although the framework allows this flexibility, we will start focusing on PyTorch for next steps on our end. You are very welcome
to contribute with Tensorflow building blocks to run easily-customizable experiments!
In the long-run we hope that Transfer NLP becomes backend-agnostic and can enable any kind of ML experiments.

Data Management Components

Vocabularies

We provide classes to build vocabularies over datasets.
These classes do not take into account the nature of the symbols whith which you are filling a dictionary.
Hence, whether you want to use vocabularies for tokens, characters, BPE, etc.., you can still use the vocabulary classes
coupled with a vectorizer of your choice.

Vectorizers

Vectorizers take string inputs and converts hem to lists of symbnols.
When implementing your vectorizer, you need to build the vocabularies that you need for your experiment, and set these
vocabularies as vectorizer attributes. You also need to implement the vectorize method, which turns a string input
into a list of numbers representing the symbols you choose to use to represent the text.

Loaders

Data Loaders splits te dataset into train, validation and test sets, and creates the appropriate PyTorch DataLoaders.

Modeling Components

While the framework is flexible enough to deal with any kind of objects, here are some baseline components that you
can use:

Models

A model extends the PyTorch torch.nn.Module class. You only have to define implement the __init__ and the forward
classes. Your model class will have hyperparameters (which are used at object creation), and parameters for the
forward method (used when __call__ is called). The parameters that the forward method expects should match the
parameters yield by the PyTorch batch iterator. For example:

import torch
from transfer_nlp.plugins.config import register_plugin

@register_plugin
class MyClassifier(torch.nn.Module):
 def __init__(self, input_dim: int, ouput_dim: int):

 super(MyClassifier, self).__init__()

 def forward(self, input_tensor: torch.tensor):
 # Do complex transofmrations
 return result

In this example, you need to set your data loader to yield batches with the key “input_tensor”.
If the forward method has default parameters that do not appear in the batch, they will be used, otherwise tyey will
be replaced by the values from the batch

Optimizers

Optimizers allows for moving the model parameters in the direction of their gradients, following the strategy proper of
a certain optimizer.
The framework registry comes with all PyTorch optimizers so you should be good to go for most cases, e.g.:

experiment_config = {
 "optimizer": {"_name": "Adam",
 "params": "model_params"
 }
 }

However, if you want to use a custom Optimizer, you need to extend the torch.optim.Optimizer class and
register it to the registry. For example, if we want to use the optimizer used for BERT, we can use this
implementation [https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/optimization.py]
and register it like this:

@register_plugin
class BertAdam(Optimizer):

 def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
 max_grad_norm=1.0):

 super(BertAdam, self).__init__(params, defaults)
 def step(self, closure=None):
 # Compute the loss
 return loss

experiment_config = {
 "optimizer": {"_name": "BertAdam",
 "params": "model_params"
 }
 }

Trainer Components

While the framework is flexible enough to deal with any kind of trainers, we encourage the use of a framework to manage
your training loops. We found that Ignite [https://pytorch.org/ignite/] provides everything we could expect from
a training management system.

Ignite defines 6 classes of events, defining a training loop:

	STARTED: start the training loop

	EPOCH_STARTED: start an epoch

	ITERATION_STARTED: start processing of one batch

	ITERATION_COMPLETED: complete processing of one batch

	EPOCH_COMPLETED: complete a full epoch

	COMPLETED: complete the training loop

Ignite allows to perform some actions at each of these events, by simply adding events.

Here are some examples of events you can do:

	Track metrics and log them on the terminal

	Log metrics, parameters norms, histograms, distributions, etc.. to Tensorboard (via TensorboardX)

	Learning schedulers: adapt the learning rates at different times of the training. A good example is the Cyclical learning rate scheduling, which has proven successful in models like ULMFit [https://arxiv.org/abs/1801.06146]

	Model checkpointing: save your model periodically if it improves

	Early stopping: stop training when no learning is ever observed

	Terminate on NaNs: terminates the training when nans or infinite values are encountered.

	Timers

	…

We provide a BasicTrainer class which should set you up for most cases in the supervised single task setting.
For more complex settings like multi-task learning, you might want to change the _update and _inference methods
to fit several tasks objectives / loss functions.

Frequently Asked Questions

vocabulary

	
class transfer_nlp.loaders.vocabulary.Vocabulary(token2id: Dict = None, add_unk: bool = True, unk_token: str = '<UNK>')

	

vectorizer

	
class transfer_nlp.loaders.vectorizers.Vectorizer(data_file: str)

	

loader

	
class transfer_nlp.loaders.loaders.DatasetSplits(train_set: torch.utils.data.Dataset, train_batch_size: int, val_set: torch.utils.data.Dataset, val_batch_size: int, test_set: torch.utils.data.Dataset = None, test_batch_size: int = None)

	

This file contains an abstract CustomDataset class, on which we can build up custom dataset classes.

In your project, you will have to customize your data loader class. To let the framework interact with your class, you
need to use the decorator @register_dataset, just as in the examples in this file

	
class transfer_nlp.loaders.loaders.DataFrameDataset(df)

	

	
class transfer_nlp.loaders.loaders.DatasetHyperParams(vectorizer: transfer_nlp.loaders.vectorizers.Vectorizer)

	

config

	
class transfer_nlp.plugins.config.ExperimentConfig(experiment: Union[str, pathlib.Path, Dict], **env)

	

This file contains all necessary plugins classes that the framework will use to let a user interact with custom models, data loaders, etc…

The Registry pattern used here is inspired from this post: https://realpython.com/primer-on-python-decorators/

	
class transfer_nlp.plugins.config.ConfigFactoryABC

	

	
class transfer_nlp.plugins.config.ParamFactory(param)

	Factory for simple parameters

	
class transfer_nlp.plugins.config.PluginFactory(cls, param2config_key: Optional[Dict[str, str]], *args, **kwargs)

	Factory for complex objects creation

	
exception transfer_nlp.plugins.config.UnconfiguredItemsException(items)

	

trainers

	
class transfer_nlp.plugins.trainers.BasicTrainer(model: torch.nn.Module, dataset_splits: transfer_nlp.loaders.loaders.DatasetSplits, loss: torch.nn.Module, optimizer: torch.optim.Optimizer, metrics: Dict[str, ignite.metrics.Metric], experiment_config: transfer_nlp.plugins.config.ExperimentConfig, device: str = None, num_epochs: int = 1, seed: int = None, cuda: bool = None, loss_accumulation_steps: int = 4, scheduler: Any = None, regularizer: transfer_nlp.plugins.regularizers.RegularizerABC = None, gradient_clipping: float = 1.0, output_transform=None, tensorboard_logs: str = None, embeddings_name: str = None, finetune: bool = False)

	
	
freeze_and_replace_final_layer()

	Freeze al layers and replace the last layer with a custom Linear projection on the predicted classes
Note: this method assumes that the pre-trained model ends with a classifier layer, that we want to learn
:return:

	
train()

	Launch the ignite training pipeline
If fine-tuning mode is granted in the config file, freeze all layers, replace classification layer by a Linear layer
and reset the optimizer
:return:

This class contains the abstraction interface to customize runners.
For the training loop, we use the engine logic from pytorch-ignite

Check experiments for examples of experiment json files

	
class transfer_nlp.plugins.trainers.TrainingMetric(metric: ignite.metrics.Metric)

	

predictors

	
class transfer_nlp.plugins.predictors.PredictorABC(vectorizer: transfer_nlp.loaders.vectorizers.Vectorizer, model: torch.nn.Module)

	
	
decode(*args, **kwargs) → List[Dict]

	Return an output dictionary for every example in the batch
:param args:
:param kwargs:
:return:

	
forward(batch: Dict[str, Any]) → torch.tensor

	Do the forward pass
:param batch:
:return:

	
json_to_data(input_json: Dict) → Dict

	Transform a json entry into a data example, which is the same that what the __getitem__ method in the
data loader, except that this does not output any expected label as in supervised setting
:param input_json:
:return:

	
json_to_json(input_json: Dict) → Dict[str, Any]

	Full prediction: input_json –> data example –> predictions –> json output
:param input_json:
:return:

	
output_to_json(*args, **kwargs) → Dict[str, Any]

	Convert the result into a proper json
:param args:
:param kwargs:
:return:

	
predict(batch: Dict[str, Any]) → List[Dict]

	Decode the output of the forward pass
:param batch:
:return:

regularizers

	
class transfer_nlp.plugins.regularizers.RegularizerABC

	

Surnames Classification

A use case that arise very often in the book NLP with PyTorch is that of surnames classification: a dataset of names
from different countries is provided and the task is to predict the country.

Vectorizer

The most straigthforward to represent a surname is to get its one-hot character encoding:

import pandas as pd
import numpy as np
from transfer_nlp.loaders.vocabulary import Vocabulary

@register_plugin
class MyVectorizer(Vectorizer):

 def __init__(self, data_file: str):

 super().__init__(data_file=data_file)

 df = pd.read_csv(data_file)
 data_vocab = Vocabulary(unk_token='@')
 target_vocab = Vocabulary(add_unk=False)

 # Add surnames and nationalities to vocabulary
 for index, row in df.iterrows():
 surname = row.surname
 nationality = row.nationality
 data_vocab.add_many(tokens=surname)
 target_vocab.add_token(token=nationality)

 self.data_vocab = data_vocab
 self.target_vocab = target_vocab

 def vectorize(self, input_string: str) -> np.array:

 encoding = np.zeros(shape=len(self.data_vocab), dtype=np.float32)
 for character in surname:
 encoding[self.data_vocab.lookup_token(token=character)] = 1

 return encoding

Data loader

Let’s create a data loader and have the PyTorch loaders set for train, vaildation and test categories.

from transfer_nlp.loaders.loaders import DatasetSplits, DataFrameDataset, DatasetHyperParams

@register_plugin
class MyDataLoader(DatasetSplits):

 def __init__(self, data_file: str, batch_size: int, dataset_hyper_params: DatasetHyperParams):
 self.df = pd.read_csv(data_file)
 self.vectorizer: Vectorizer = dataset_hyper_params.vectorizer

 self.df['x_in'] = self.df.apply(lambda row: self.vectorizer.vectorize(row.surname), axis=1)
 self.df['y_target'] = self.df.apply(lambda row: self.vectorizer.target_vocab.lookup_token(row.nationality), axis=1)

 train_df = self.df[self.df.split == 'train'][['x_in', 'y_target']]
 val_df = self.df[self.df.split == 'val'][['x_in', 'y_target']]
 test_df = self.df[self.df.split == 'test'][['x_in', 'y_target']]

 super().__init__(train_set=DataFrameDataset(train_df), train_batch_size=batch_size,
 val_set=DataFrameDataset(val_df), val_batch_size=batch_size,
 test_set=DataFrameDataset(test_df), test_batch_size=batch_size)

Model

A simple modeling approach is to take the character one-hot encoding as input to a multi-layer perceptron:

import torch

@register_plugin
class ModelHyperParams(ObjectHyperParams):

 def __init__(self, dataset_splits: DatasetSplits):
 super().__init__()
 self.input_dim = len(dataset_splits.vectorizer.data_vocab)
 self.output_dim = len(dataset_splits.vectorizer.target_vocab)

@register_plugin
class MultiLayerPerceptron(torch.nn.Module):

 def __init__(self, model_hyper_params: ObjectHyperParams, hidden_dim: int):
 super(MultiLayerPerceptron, self).__init__()

 self.input_dim = model_hyper_params.input_dim
 self.hidden_dim = hidden_dim
 self.output_dim = model_hyper_params.output_dim

 self.fc1 = torch.nn.Linear(in_features=self.input_dim, out_features=hidden_dim)
 self.fc2 = torch.nn.Linear(in_features=hidden_dim, out_features=self.output_dim)

 def forward(self, x_in: torch.tensor) -> torch.tensor:
 """
 Linear -> ReLu -> Linear (+ softmax if probabilities needed)
 :param x_in: size (batch, input_dim)
 :return:
 """
 intermediate = torch.nn.functional.relu(self.fc1(x_in))
 output = self.fc2(intermediate)

 if self.output_dim == 1:
 output = output.squeeze()

 return output

Predictor

To use the model in inference mode, we create a specific predictor object:

from transfer_nlp.plugins.predictors import PredictorABC, PredictorHyperParams
from transfer_nlp.plugins.config import register_plugin

@register_plugin
class MyPredictor(PredictorABC):

 def __init__(self, predictor_hyper_params: PredictorHyperParams):
 super().__init__(predictor_hyper_params=predictor_hyper_params)

 def json_to_data(self, input_json: Dict):
 return {
 'x_in': torch.tensor([self.vectorizer.vectorize(input_string=input_string) for input_string in input_json['inputs']])}

 def output_to_json(self, outputs: List) -> Dict[str, Any]:
 return {
 "outputs": outputs}

 def decode(self, output: torch.tensor) -> List[Dict[str, Any]]:
 probabilities = torch.nn.functional.softmax(output, dim=1)
 probability_values, indices = probabilities.max(dim=1)
 return [{
 "class": self.vectorizer.target_vocab.lookup_index(index=int(res[1])),
 "probability": float(res[0])} for res in zip(probability_values, indices)]

Experiment

Now that all classes are properly designed, we can define an experiment in a config file and have it trained:

 from transfer_nlp.plugins.config import ExperimentConfig

 experiment_config = {
"predictor": {
 "_name": "MLPPredictor",
 "data": "$my_dataset_splits",
 "model": "$model"
},
"my_dataset_splits": {
 "_name": "SurnamesDatasetMLP",
 "data_file": "$HOME/surnames/surnames_with_splits.csv",
 "batch_size": 128,
 "vectorizer": {
 "_name": "SurnamesVectorizerMLP",
 "data_file": "$HOME/surnames/surnames_with_splits.csv"
 }
},
"model": {
 "_name": "MultiLayerPerceptron",
 "hidden_dim": 100,
 "data": "$my_dataset_splits"
},
"optimizer": {
 "_name": "Adam",
 "lr": 0.01,
 "alpha": 0.99,
 "params": {
 "_name": "TrainableParameters"
 }
},
"scheduler": {
 "_name": "ReduceLROnPlateau",
 "patience": 1,
 "mode": "min",
 "factor": 0.5
},
"trainer": {
 "_name": "BasicTrainer",
 "model": "$model",
 "dataset_splits": "$my_dataset_splits",
 "loss": {
 "_name": "CrossEntropyLoss"
 },
 "optimizer": "$optimizer",
 "gradient_clipping": 0.25,
 "num_epochs": 5,
 "seed": 1337,
 "regularizer": {
 "_name": "L1"
 },
 "tensorboard_logs": "$HOME/surnames/tensorboard/mlp",
 "metrics": {
 "accuracy": {
 "_name": "Accuracy"
 },
 "loss": {
 "_name": "LossMetric",
 "loss_fn": {
 "_name": "CrossEntropyLoss"
 }
 }
 }
}

 # Configure the experiment
 experiment = ExperimentConfig(experiment_config)
 # Launch the training loop
 experiment['trainer'].train()
 # Use the predictor for inference
 input_json = {"inputs": ["Zhang", "Mueller", "Rastapopoulos"]}
 output_json = experiment['predictor'].json_to_json(input_json=input_json)

License

MIT License

Copyright (c) 2019 Feedly

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE

Contact

Contact peter.martigny@gmail.com

Help

Contact peter.martigny@gmail.com

Join the Feedly Lab Slack

Join the Feedly Lab Slack on this link [https://join.slack.com/t/feedlylab/shared_invite/enQtNDEyMzQ2Nzk4OTQ1LWQ3ZmExOWYwNDUwN2U4Yzg2MDZjNDJmZDQ4YTFiY2RmYjIyMjBmOGZiZDQwODQxZjRiZDY2Mzc1NTc1YjNjMmQ].

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 transfer_nlp	

 	
 	
 transfer_nlp.loaders.loaders	

 	
 	
 transfer_nlp.loaders.vocabulary	

 	
 	
 transfer_nlp.plugins.config	

 	
 	
 transfer_nlp.plugins.predictors	

 	
 	
 transfer_nlp.plugins.regularizers	

 	
 	
 transfer_nlp.plugins.trainers	

Index

 B
 | C
 | D
 | E
 | F
 | J
 | O
 | P
 | R
 | T
 | U
 | V

B

 	
 	BasicTrainer (class in transfer_nlp.plugins.trainers)

C

 	
 	ConfigFactoryABC (class in transfer_nlp.plugins.config)

D

 	
 	DataFrameDataset (class in transfer_nlp.loaders.loaders)

 	DatasetHyperParams (class in transfer_nlp.loaders.loaders)

 	
 	DatasetSplits (class in transfer_nlp.loaders.loaders)

 	decode() (transfer_nlp.plugins.predictors.PredictorABC method)

E

 	
 	ExperimentConfig (class in transfer_nlp.plugins.config)

F

 	
 	forward() (transfer_nlp.plugins.predictors.PredictorABC method)

 	
 	freeze_and_replace_final_layer() (transfer_nlp.plugins.trainers.BasicTrainer method)

J

 	
 	json_to_data() (transfer_nlp.plugins.predictors.PredictorABC method)

 	
 	json_to_json() (transfer_nlp.plugins.predictors.PredictorABC method)

O

 	
 	output_to_json() (transfer_nlp.plugins.predictors.PredictorABC method)

P

 	
 	ParamFactory (class in transfer_nlp.plugins.config)

 	PluginFactory (class in transfer_nlp.plugins.config)

 	
 	predict() (transfer_nlp.plugins.predictors.PredictorABC method)

 	PredictorABC (class in transfer_nlp.plugins.predictors)

R

 	
 	RegularizerABC (class in transfer_nlp.plugins.regularizers)

T

 	
 	train() (transfer_nlp.plugins.trainers.BasicTrainer method)

 	TrainingMetric (class in transfer_nlp.plugins.trainers)

 	transfer_nlp.loaders.loaders (module)

 	transfer_nlp.loaders.vocabulary (module)

 	
 	transfer_nlp.plugins.config (module)

 	transfer_nlp.plugins.predictors (module)

 	transfer_nlp.plugins.regularizers (module)

 	transfer_nlp.plugins.trainers (module)

U

 	
 	UnconfiguredItemsException

V

 	
 	Vectorizer (class in transfer_nlp.loaders.vectorizers)

 	
 	Vocabulary (class in transfer_nlp.loaders.vocabulary)

 _static/TransferNLP_Logo.jpg
TransterinLr

nav.xhtml

 Table of Contents

 		
 Transfer NLP Documentation

 		
 Concepts

 		
 Experiment

 		
 Json file

 		
 Final thoughts

 		
 Data Management Components

 		
 Vocabularies

 		
 Vectorizers

 		
 Loaders

 		
 Modeling Components

 		
 Models

 		
 Optimizers

 		
 Trainer Components

 		
 Frequently Asked Questions

 		
 vocabulary

 		
 vectorizer

 		
 loader

 		
 config

 		
 trainers

 		
 predictors

 		
 regularizers

 		
 Surnames Classification

 		
 Vectorizer

 		
 Data loader

 		
 Model

 		
 Predictor

 		
 Experiment

 		
 License

 		
 Contact

 		
 Help

 		
 Join the Feedly Lab Slack

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png
%

Transfer NP

